
© DIAMONDS Consortium 2010-2013

Online Model-Based Behavioral Fuzzing

Fraunhofer FOKUS
Martin Schneider
Jürgen Großmann
Ina Schieferdecker

Giesecke & Devrient
Andrej Pietschker

© DIAMONDS Consortium 2010-2013

 Introduction to Model-Based Behavioral Fuzzing

 Motivating Case Study: Giesecke & Devrient Banknote Processing Machine

 Challenges

 Online Model-Based Behavioral Fuzzing

 Conclusions & Outlook

Outline

© DIAMONDS Consortium 2010-2013

 Fuzzing is about injecting invalid or random inputs
 to obtain unexpected behavior
 to identify errors and potential vulnerabilities

 Interface robustness testing

 Fuzzing is able to find (zero-day-)vulnerabilities, e.g.

 crashes
 denial of service
 security exposures
 performance degradation

 No false positives

Introduction to Model-Based Behavioral Fuzzing
Definition of Fuzzing

© DIAMONDS Consortium 2010-2013

 Random-based fuzzers generate randomly input data. They don’t know nearly
anything about the SUT’s protocol.
 fuzzed input: HdmxH&k dd#**&%

 Template-based fuzzers uses existing traces (files, …) and fuzzes some data.
 template: GET /index.html
 fuzzed input: GE? /index.html, GET /inde?.html

 Block-based fuzzers break individual protocol messages down in static (grey) and

variable (white) parts and fuzz only the variable part.

 fuzzed input: GET /inde?.html, GET /index.&%ml

 Dynamic Generation/Evolution-based fuzzers learn the protocol of the SUT from

feeding the SUT with data and interpreting its responses, for example using
evolutionary algorithms.

Introduction to Model-Based Behavioral Fuzzing
Categorization

GET /index.html
only the (white) part gets fuzzed

d
u

m
b

 s
m

a
rt

© DIAMONDS Consortium 2010-2013

 Model-based fuzzers use models of the input domain (protocol models, e.g. context
free grammars), for generating systematic non-random test cases

 The model is executed to generate complex interaction with the SUT.

 Thus it is possible fuzz data after
passing a particular point.

 Model-based fuzzers finds defects
which human testers would fail to find.

Introduction to Model-Based Behavioral Fuzzing
Model-Based Fuzzing

specified
functionality

negative input
space
(unlimited),
target of random
fuzzing

target of
model-based fuzzing

see also: Takanen, A., DeMott, J., Miller, C.: Fuzzing for Software Security Testing and

Quality Assurance. Artech House, Boston (2008)

© DIAMONDS Consortium 2010-2013

 Traditional fuzzing generates only invalid input data to find vulnerabilities in the SUT.

 Behavioral fuzzing complements traditional fuzzing by not fuzzing only input data of
messages but changing the appearance and order of messages, too.

 The motivation for the idea of fuzzing behavior is that vulnerabilities cannot only be
revealed when invalid input data is accepted and processed but also when invalid
sequences of messages are accepted and processed.

 A real-world example is given in [KHK10] where a vulnerability in Apache web server
was found by repeating the host header message in an HTTP request.

[KHK10] Kitagawa, T., Hanaoka, M., Kono, K.: AspFuzz: A State-aware Protocol Fuzzer
based on Application-layer Protocols. In: IEEE Symposium on Computers and Communications,

pp.202-208 (2010)

Introduction to Model-Based Behavioral Fuzzing
Behavioral Fuzzing vs. Data Fuzzing

GET /infotext.html HTTP/1.1

Host: www.example.net

GET /infotext.html HTTP/1.1

Host: www.example.net

Host: www.example.net

GET /infotext.html HTTP/1.1

Host: www.example.net%s%s%s
Traditional Data Fuzzing

Behavioral Fuzzing

© DIAMONDS Consortium 2010-2013

TC SUT

1: ÌÏÇÏÎƽƛƾ

2: ÃÏÎÆÉÇÕÒÅƽƛƾ

valid sequence

Remove
Message
1: logon

Behavioral
Fuzzing

Fuzzer SUT

1: ÃÏÎÆÉÇÕÒÅƽƛƾ

invalid sequence

 Test cases are generated by fuzzing one or more valid sequences.

 This concrete fuzzing of behavior is realized by changing the order and appearance of
messages in two ways:

 By rearranging messages directly. This enables straight-lined sequences to be fuzzed.
Fuzzing operators are for example remove, move or repeat a message.

 By utilizing control structures of UML 2.x sequence diagrams, such as combined
fragments, guards, constraints and invariants. This allows more sophisticated behavioral
fuzzing that avoids less efficient random fuzzing.

 By applying one ore more fuzzing operators to a valid sequence, invalid sequences
(= behavioral fuzzing test cases) are generated.

Introduction to Model-Based Behavioral Fuzzing
of UML Sequence Diagrams

© DIAMONDS Consortium 2010-2013

one deviation a few deviations many deviations

ra
n

d
o

m

• remove message

• repeat message

• change type of

message

• insert message

• move message

• swap messages

• permute messages

regarding single

SUT lifeline

• permute messages

regarding several

SUT lifelines

s
m

a
rt

• negate

interaction

constraint

• change bounds

of loop

• change

time/duration

constraint

• interchange

interaction

constraints

• disintegrate

combined fragment

• change interaction

operator

• move combined

fragment

• remove combined

fragment

• repeat combined

fragment

Introduction to Model-Based Behavioral Fuzzing
Overview of Behavioral Fuzzing Operators

© DIAMONDS Consortium 2010-2013

 remove, repeat, move, change type of message, insert message

 swap messages

 permute messages
 regarding a single SUT lifeline (weak sequencing)
 regarding several SUT lifelines (strict sequencing)

 rotate messages

Introduction to Model-Based Behavioral Fuzzing
Operators for Messages

© DIAMONDS Consortium 2010-2013

 combined fragment are control structures for UML sequence diagrams

 a combined fragment consists of:
 interaction operator

 Alternatives
 Option
 Break
 Weak Sequencing
 Strict Sequencing
 Negative
 Consider/Ignore
 Loop

 interaction operands
 guards

Introduction to Model-Based Behavioral Fuzzing
Combined Fragments

© DIAMONDS Consortium 2010-2013

 negate interaction constraint, interchange interaction constraints
 change bounds of loop
 disintegrate combined fragments
 insert, remove, repeat, move combined fragments
 change interaction operator

Introduction to Model-Based Behavioral Fuzzing
Operators for Combined Fragments

© DIAMONDS Consortium 2010-2013

 Three values have an impact on the number of test cases that can be generated from
one valid sequence using behavioral fuzzing:
 number of fuzzing operators έ έὴὩὶὥὸέὶί

 number of elements in the sequence diagram Ὡ ὩὰὩάὩὲὸί

 maximum number of fuzzing operators per test case ὲ

 A fuzzing operator can be applied to an element of a sequence in different ways. The
number of possibilities to apply all fuzzing operators to all elements of a sequence is

έ έẗὩ
where Ὧ is a constant representing the maximum number of possibilities to apply a

fuzzing operator to one model element.

 The following formula is a first approximation of the complexity:

ײַ
έᴂȦ

έᴂὭȦ

Introduction to Model-Based Behavioral Fuzzing
Complexity

© DIAMONDS Consortium 2010-2013

 Case study from the ITEA-2 research project DIAMONDS
 Banknote Processing System (BPS) from Giesecke & Devrient
 Counts, assesses and sorts banknotes

 Test bed
 BPS software installed on a virtual machine
 Sensor data for banknotes are simulated

Motivating Case Study from Giesecke & Devrient
Banknote Processing System

© DIAMONDS Consortium 2010-2013

 A functional test case consists of 4 steps:

 login: authentication of operator

 configure: select e.g. denomination and

currency

 count: starts the automatic counting process

 logout

Motivating Case Study from Giesecke & Devrient
Structure of a Functional Test Case

© DIAMONDS Consortium 2010-2013

• Challenges

• huge number of test cases

• test execution takes very long time: about 9 minutes per test case

• Solution: Online Model-Based Behavioral Fuzzing

Motivating Case Study from Giesecke & Devrient
Challenges

© DIAMONDS Consortium 2010-2013

• online test case generation

• model-based behavioral fuzzing
takes place at test execution time

• integration of previous test results

• depending on the test verdict of
a single test case, it reduces test
execution time in both cases:
pass and fail test verdict

• focusing on message sub-
sequences

• reduces the number of test cases,
e.g. by a previously conducted risk
analysis

Online Model-Based Behavioral Fuzzing
Overview & Algorithm

© DIAMONDS Consortium 2010-2013

• model-based behavioural fuzzing takes place at test execution time

• generating one test case at a time reduces resource consumption compared to offline
generation (all test cases at once)

• persisting only test cases that actually revealed a vulnerability for later analysis

• throws most test cases away

• especially helpful for (behavioural) fuzzing

• huge number of test cases

Online Model-Based Behavioral Fuzzing
Online Test Case Generation

ײַ
έᴂȦ

έᴂὭȦ

© DIAMONDS Consortium 2010-2013

• Saves execution time

• two cases:

• verdict PASS: if the SUT remains healthy after executing a test case, time-
consuming restart of the SUT can be avoided (requires some reset message)

• verdict FAIL: avoids generation of test cases that would reveal already
discovered vulnerabilities

Online Model-Based Behavioral Fuzzing
Integration of Previous Test Results

TC SUT

message A

message B

valid sequence

message C

Fuzzer SUT

message B

message A

test case 2

message E

Fuzzer SUT

message B

message A

test case 1

message D

© DIAMONDS Consortium 2010-2013

 do not fuzz the complete sequence but only a part of it

 may reduce the overall number of possible test cases

ײַ В
Ȧ

Ȧ
 with έ έẗὩ

 may reduce the test execution time of a single test case

Online Model-Based Behavioral Fuzzing
Focusing on Message Subsequences

© DIAMONDS Consortium 2010-2013

Application of fuzzing operator

MoveMessage

Online Model-Based Behavioral Fuzzing
Focusing on Message Subsequences

© DIAMONDS Consortium 2010-2013

Results

 first results expected soon but we are optimistic to dramatically reduce execution time
of a test suite

Challenges

 finding appropriate reset message(s), may depend on state of the SUT after a test case
was executed

 determining a message subsequence (i.e. the region to be fuzzed) according to e.g. a
risk analysis, this may require experts

Outlook

 automatically determine the actual message sequence
that revealed a vulnerability

 A, B, D, C ?

 B, D, C ?

 D, C ?

Conclusions & Outlook

Fuzzer SUT

message A

message B

test case

message D

message C

© DIAMONDS Consortium 2010-2013

Thank you for your attention!

Any questions?

