[RJA[S[E[N

o
DiAMoNDs @O 1

Online Model-Based Behavioral Fuzzing

Fraunhofer FOKUS
Martin Schneider
Jargen GroBmann
Ina Schieferdecker

Giesecke & Devrient
Andrej Pietschker

3 ITEAZ © DIAMONDS Consortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Outline

[RIA[S[E|N
&b =7

DIANONDS &@8U

L]

Introduction to Model-Based Behavioral Fuzzing

Motivating Case Study: Giesecke & Devrient Banknote Processing Machine

Challenges

Online Model-Based Behavioral Fuzzing

Conclusions & Outlook

3 ITEAZ © DIAMONDS Consortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Introduction to Model-Based Behavioral Fuzzing

Definition of Fuzzing M -
DIAMONDS Q&E_

w|

L]

Fuzzing is about injecting invalid or random inputs
= to obtain unexpected behavior
= to identify errors and potential vulnerabilities

Interface robustness testing

Fuzzing is able to find (zero-day-)vulnerabilities, e.g.

= crashes

= denial of service

= security exposures

= performance degradation

No false positives

y ITEAZ © DIAMONDS Consortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Introduction to Model-Based Behavioral Fuzzing

Categorization EESE
DiAkoNDS &S

21| - Random-based fuzzers generate randomly input data. They don’t know nearly
anything about the SUT's protocol.
fuzzed input: HdmxH&kK dd#**&%

Template-based fuzzers uses existing traces (files, ...) and fuzzes some data.
template: GET /index.html
fuzzed input: GE? /index.html, GET /inde?.html

Block-based fuzzers break individual protocol messages down in static (grey) and
variable (white) parts and fuzz only the variable part.

only the (white) part gets fuzzed
R v the (white) partg

fuzzed input: GET /inde?.html, GET /index.&%ml

Dynamic Generation/Evolution-based fuzzers learn the protocol of the SUT from
feeding the SUT with data and interpreting its responses, for example using
evolutionary algorithms.

3 ITEAZ © DIAMONDS Consortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Introduction to Model-Based Behavioral Fuzzing

Model-Based Fuzzing

DiAONDS &@EU

Model-based fuzzers use models of the input domain (protocol models, e.g. context

free grammars), for generating systematic non-random test cases

passing a particular point.

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Model-based fuzzers finds defects
which human testers would fail to find.

Thus it is possible fuzz data after

specified

functionality fuzzing

The model is executed to generate complex interaction with the SUT.

negative input
space
(unlimited),
target of random

target of
model-based fuzzing

see also: Takanen, A., DeMott, J., Miller, C.: Fuzzing for Software Security Testing and

Quiality Assurance. Artech House, Boston (2008)

© DIAMONDS Consortium 2010-2013

L1 =]

Introduction to Model-Based Behavioral Fuzzing

Behavioral Fuzzing vs. Data Fuzzing RIATS

E

89

DiAMoNDS Q@S

Traditional fuzzing generates only invalid input data to find vulnerabilities in the SUT.

Behavioral fuzzing complements traditional fuzzing by not fuzzing only input data of
messages but changing the appearance and order of messages, too.

The motivation for the idea of fuzzing behavior is that vulnerabilities cannot only be
revealed when invalid input data is accepted and processed but also when invalid
sequences of messages are accepted and processed.

A real-world example is given in [KHK10] where a vulnerability in Apache web server
was found by repeating the host header message in an HTTP request.

" . GET /infotext.html HTTP/1.1
Traditional Data Fuzzing |_

Host: www.example.net%s%s%s

GET /infotext.html HTTP/1.1
Host: www.example.net

GET /infotext.html HTTP/1.1
Behavioral Fuzzing Host: www.example.net

Host: www.example.net

[KHK10] Kitagawa, T., Hanaoka, M., Kono, K.: AspFuzz: A State-aware Protocol Fuzzer
based on Application-layer Protocols. In: IEEE Symposium on Computers and Communications,

M iTEAZ © DIAMONDS Cpps202+208 (20108

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Introduction to Model-Based Behavioral Fuzzing

of UML Sequence Diagrams e

DiAONDS &@EU

= Test cases are generated by fuzzing one or more valid sequences.
= This concrete fuzzing of behavior is realized by changing the order and appearance of
messages in two ways:

= By rearranging messages directly. This enables straight-lined sequences to be fuzzed.
Fuzzing operators are for example remove, move or repeat a message.

= By utilizing control structures of UML 2.x sequence diagrams, such as combined
fragments, guards, constraints and invariants. This allows more sophisticated behavioral
fuzzing that avoids less efficient random fuzzing.
= By applying one ore more fuzzing operators to a valid sequence, invalid sequences
(= behavioral fuzzing test cases) are generated.

valid sequence I B‘;[',:‘z’,',‘,’. invalid sequence
TC

1: logon

SUT Fuzzer SUT
| |
| 117 Cciisas |
| > Remove
| 2: AT1T EECOOAs K s Message 1: AT 1 ZECOOAs A &
|
!

Yy ——

)] ITEAZ © DIAMONDS Consortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Introduction to Model-Based Behavioral Fuzzing

Overview of Behavioral Fuzzing Operators e

g1
[

s
DiAMONDS &OW

one deviation a few deviations many deviations
* remove message |+ move message * permute messages
c | * repeatmessage | swap messages regarding single
S| change type of SUT lifeline
= message * permute messages
= | * Insert message regarding several
SUT lifelines
* negate * interchange * remove combined
Interaction interaction fragment
constraint constraints * repeat combined
+ |+ change bounds « disintegrate fragment
g of loop combined fragment
©» |« change « change interaction
time/duration operator
constraint * move combined
fragment

N ITEAZ © DIAMONDS Consortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Introduction to Model-Based Behavioral Fuzzing

Operators for Messages FSE
DiAMoNDS &@E

= remove, repeat, move, change type of message, insert message
= Swap messages

= permute messages
= regarding a single SUT lifeline (weak sequencing)
= regarding several SUT lifelines (strict sequencing)
= rotate messages

message1() message1() message3()

I
N message2() |°'ob messa | messaged4() ol
Q Ldl
L <, “‘egsa L]
I a_e I [
T message3() I (< (0" message, | T message1() l

T 1 T
T I /T | T l
‘ message4() . . message4() .) message2())

| n | | sortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Introduction to Model-Based Behavioral Fuzzing

Combined Fragments

[RIA[S[E

o
DiAMoNDS &@OL

= combined fragment are control structures for UML sequence diagrams

= a combined fragment consists of:
= interaction operator
= Alternatives
Option
Break
Weak Sequencing
Strict Sequencing
Negative
Consider/Ignore
= Loop
= interaction operands
= guards

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

—

&

alt

[condition]

© DIAMONDS Consortium 2010-2013

Introduction to Model-Based Behavioral Fuzzing

Operators for Combined Fragments

[RIA[S[E|N
o
DiamoNDs @O

change bounds of loop
disintegrate combined fragments

change interaction operator

/

insert, remove, repeat, move combined fragments

negate interaction constraint, interchange interaction constraints

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

©

IAMONDS Consortium 2010-2013

Introduction to Model-Based Behavioral Fuzzing
JA[S[E|N

Complexity & s
U?:’“L-J‘-—ﬁ

DIAMONDS NUE

2]

J

g

(£

-

= Three values have an impact on the number of test cases that can be generated from
one valid sequence using behavioral fuzzing:
= number of fuzzing operators € 1€NQi oJjoéi i
= number of elements in the sequence diagram Q |[QaQa Qe o il
= maximum number of fuzzing operators per test case ¢

= A fuzzing operator can be applied to an element of a sequence in different ways. The
number of possibilities to apply all fuzzing operators to all elements of a sequence is
£ £tQ
where "Qis a constant representing the maximum number of possibilities to apply a
fuzzing operator to one model element.

= The following formula is a first approximation of the complexity:

) ¢ Ao
' (¢ QY

)1 ITEAZ © DIAMONDS Consortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Motivating Case Study from Giesecke & Devrient
Banknote Processing System

[RIA[S[E[N
ol 1]

(=1l

DiRoNDs &&E

= Case study from the ITEA-2 research project DIAMONDS
= Banknote Processing System (BPS) from Giesecke & Devrient
= Counts, assesses and sorts banknotes

= Test bed

= BPS software installed on a virtual machine
= Sensor data for banknotes are simulated

Vmware ESXi DIAMONDS GuD Test Setup
based Server Machine for
Test System
Remote Desktop Access J Execution

currency Reconciliation
Processor Station

>
) <

Remote Remote
Desktop
Access

(&

Desktop
Access

FOKUS NETWORK

© DIAMONDS Consortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Motivating Case Study from Giesecke & Devrient

Structure of a Functional Test Case EESE
DikiioNns @O

:TC : BPS
= A functional test case consists of 4 steps: | 1: login() |

= login: authentication of operator

T 2: configure()

- . ; g
= configure: select e.g. denomination and
currency |
T 3: count() h-l
= count: starts the automatic counting process
- -) |
logout 4: logout() .

3 ITEAZ © DIAMONDS Consortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Motivating Case Study from Giesecke & Devrient

Challenges

e Challenges

e huge number of test cases
o test execution takes very long time: about 9 minutes per test case

startup

login

counting

[RIA[S[E

89

DiAMoNDS Q@S

e Solution: Online Model-Based Behavioral Fuzzing

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Conlimeg Tarst
ator

HEner

Cnlirse MBLF 100]

[et

CORAS risk micdel R Pudrv i Ensr PRe

r L.

counting

logout

I Host

e—————

Executable Test
System

It

I lSoI‘twarE Bus

Currency
Processor

e

Reconciliation
Station

© DIAMONDS Consortium 2010-2013

Input: region (region to be fuzzed) <
all FuzzOpCombs (all combinations of fuzzing operator

Online MOdel-BaSEd BehaVic instances applicable to region as a stack)

. - resetM sg (brings the SUT back to the beginning of or
Overview & Algorithm before region) :
Output: revSeq (all messages sequences that revealed a
weakness)
1: revSeq = @
2: while (allFuzzOpCombs # @) do

e online test case generation 3 startupSUT()
» model-based behavioral fuzzing . ;uh’;f fg&?f he;ﬂ:ﬁy‘:ﬁff
takes place at test execution time initSUT (region)
7: repeat
]] . 8: nextComb := all FuzzOpCombs.pop()
° Integl‘atlon of previous test results o fuzzedRegion := nextComb.apply(region) €=
e depending on the test verdict of '© avoid := ({seq € revSeq | <
: : fuzzedRegion.contains(seq)} = @)
a single test case, it reduces test 11 until (not avoid or allFuzz0pCombs = @)
execution time in both cases: 12: if (avoid) then
pass and fail test verdict 13: return revSeq
14: end if
15: currRegionM sgs := nextComb.applyT o(region)
o focusing on message sub- 16: for each (né?)g in region) do
17: MS(.S€T
sequences 18: currSeqM sgs.add(msg)
e reduces the number of test cases, 19: if (not SUT is healthy) then <
e.g. by a previously conducted risk 20 revSeq = revSeqU {currSeqMsgs}
analysis 21 break
22: end if
23: end for
24: resetM sg.send()
25: end while
M iTEAZ 26: end while

INFORMATION TEGHIGLOYY FOR EURIPEAN ADVANGENENT 27 lieturn .T-E»L]Seq

Online Model-Based Behavioral Fuzzing

Online Test Case Generation Q %ﬁ
DiAONDS @&

w|

L]

e model-based behavioural fuzzing takes place at test execution time

e generating one test case at a time reduces resource consumption compared to offline
generation (all test cases at once)

e persisting only test cases that actually revealed a vulnerability for later analysis
e throws most test cases away

o especially helpful for (behavioural) fuzzing
e huge number of test cases T

y ITEAZ © DIAMONDS Consortium 2010-2013

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Online Model-Based Behavioral Fuzzing

Integration of Previous Test Results

[RIA[S[E

89

DiAMoNDS &@OU

e Saves execution time

e two cases:

e verdict PASS: if the SUT remains healthy after executing a test case, time-
consuming restart of the SUT can be avoided (requires some reset message)

startup m counting M counting

login

logout

e verdict FAIL: avoids generation of test cases that would reveal already

discovered vulnerabilities

valid sequence

test case 2

TC SUT Fuzzer

I
!: message A i E message B
E message B i \I message A
| | |
i message C i i message D
| = |

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

© DIAMONDS Consortium 2010-2013

Online Model-Based Behavioral Fuzzing
Focusing on Message Subsequences

=

[A[S|E[N
L |

»

8
07
L —
L

J

DIANONDS

do not fuzz the complete sequence but only a part of it

may reduce the overall number of possible test cases
A r r e
L (B A) with € etQ
C)
may reduce the test execution time of a single test case

startup m counting m counting

login

logout

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

© DIAMONDS Consortium 2010-2013

Online Model-Based Behavioral Fuzzing
Focusing on Message Subsequences

[RIA[S][E
on

DiAmMonDs OO

L1 =]

AEPACLAY ety ehindWi, A Fliday9iar
AWk the M'[awim-@ HPdral

Afvatiint WAL FrAlHY KRrSalifasin
Wikt &'%ytfﬁ R

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

flgsidaes drg fapvitay) without
checking authentication

ATERRY (il gverys ha £ Metsie Wi

intaraction Counting money [Cu.rthg maneay

==rhacs=s

)

{role={operator, money counterl}
{right=(money countar, configura), (man
count maney)}
{protacted="configure” "count money"}

{authentication={login logout)}

>

Application of fuzzing operator

loo
[invvalic login data) 1: login)
| T configure()
|
1 3 countioney() 1
T
| soeay MOVEMessage

© DIAMONDS Consortium 2010-2013

Conclusions & Outlook

J

EJ
>
w
m
Z]

g

& W=
4@& [um

DIAMONDS &

LI

f
-
{
[

Results

= first results expected soon but we are optimistic to dramatically reduce execution time

of a test suite

Challenges

= finding appropriate reset message(s), may depend on state of the SUT after a test case
was executed
= determining a message subsequence (i.e. the region to be fuzzed) according to e.g. a

risk analysis, this may require experts

Outlook

= automatically determine the actual message sequence
that revealed a vulnerability

- A B,D,C?
- B,D,C?
- D,C?

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

SUT

message A

message B

Fuzzer

| |
I |
| |
| |
| |
! !
I I
| message D !
| :
|

| message C !
| |
! !

© DIAMONDS Consortium 2010-2013

[RIA[S[E

o8

DiAmMonDs OO

INFORMATION TECHNGLOGY FOR EURDPEAN ADVANCEMENT

Thank you for your attention!

Any questions?

© DIAMONDS Consortium 2010-2013

